北京大学城市与环境学院研究员、助理教授
联系方式
Email: hyu@urban.pku.edu.cn
教育经历
2011.09-2017.06,美国加州理工学院(California Institute of Technology),环境科学与工程,硕士/博士
2006.09-2010.05,加拿大英属哥伦比亚大学(University of British Columbia),微生物学与免疫学,荣誉学士
科研经历
2022.12-,北京大学(Peking University),研究员、助理教授
2020.07-2022.06,美国南加州大学(University of Southern California),博士后
2017.08-2020.02,美国加州理工学院(California Institute of Technology),博士后
2010.06-2010.12,美国蒙特利湾水族馆研究所(Monterey Bay Aquarium Research Institute),科研助理
2009.01-2009.08,国际遗传工程的机器设计竞赛(International Genetically Engineered Machines iGEM Inaugural Team, UBC),校队创始核心队员
博士生导师/方向
环境微生物学、生物地球化学、微生物生态学、地质微生物学
硕士生导师/方向
环境微生物学、生物地球化学、微生物生态学、地质微生物学
研究目标
微生物在地球生态系统中发挥着至关重要的作用。我们实验组致力于解析地球生物化学循环中微生物组群的动态和功能,了解气候变化与微生物之间的相互作用,探索并利用微生物的生化反应潜能。
研究方向
1. 温室气体甲烷的生物氧化
2. 金属元素的微生物代谢
3. 微生物之间的相互作用和共生方式
研究方法
结合传统与尖端的微生物实验技术,如菌种培养、代谢产物分析、同位素示踪、遗传与进化分析、高通量测序、合成生物学、电化学、矿物结构分析、荧光与纳米二次离子质谱成像等。
野外科考
2023/08:天然湿地,内蒙古,中国
2018/10:ROC HITS深海考察, R/V Atlantis, 哥斯达黎加
2011, 2016, 2017, 2018:Monterey Canyon近海考察, R/V Western Flyer, 美国
2013, 2014, 2015:美洲大陆地质地貌实习, 美国和墨西哥
2013/03:死亡谷国家公园地质测绘, California, 美国
2013/02:磁地层和化石样品采集, James Ross Island, 南极
2009, 2010:森林土壤的长期生产力调查, British Columbia, 加拿大
教研成果
Publications
Full publication list: https://scholar.google.com/citations?hl=en&user=3no8Uy8AAAAJ
1. Rodríguez, O., Metcalfe, K.S., McGlynn, S.E., Yu, H., Dekas, A.E., Ellisman, M., Deerinck, T., Grotzinger, J.P., and Orphan, V.J. (2023) Microbially-induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation. Proceedings of the National Academy of Sciences of the United States of America, 120 (51) e2302156120. https://doi.org/10.1073/pnas.2302156120
2. Murali, R., Yu, H., Speth, D.R., Wu, F., Metcalfe, K. S., Crémière, A., Laso-Pèrez, R., Malmstrom, R.R., Goudeau, D., Woyke, T., Hatzenpichler, R., Chadwick, G.L., Connon, S.A., and Orphan, V.J. (2023). Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea. PLoS Biology, 21(9), e3002292. https://doi.org/10.1371/journal.pbio.3002292
3. Yu, H., Speth, D.R., Connon, S.A., Goudeau, D., Malmstrom, R.R., Woyke, T., and Orphan, V.J. (2022) Community structure and microbial associations in sediment-free methanotrophic enrichment cultures from a marine methane seep. Applied and Environmental Microbiology. e02109-21. https://doi.org/10.1128/aem.02109-21
4. Heryakusuma, C., Susanti, D., Yu, H., Li, Z., Purwantini, E., Hettich, R.L., Orphan, V.J., and Mukhopadhyay, B. (2022) A reduced F420-dependent nitrite reductase (FNiR) in an anaerobic methanotrophic archaeon. Journal of Bacteriology. e00078-22. https://doi.org/10.1128/jb.00078-22
5. Yu, H., Chadwick, G.L., Lingappa, U.F., and Leadbetter J.R. (2022) Comparative genomics on cultivated and uncultivated, freshwater and marine “Candidatus Manganitrophaceae” species implies their worldwide reach in manganese chemolithoautotrophy. mBio. 13 (2), e03421-21. https://doi.org/10.1128/mbio.03421-21
6. Chadwick, G. L., Skennerton, C. T., Laso-Pérez, R., Leu, A. O., Speth, D. R., Yu, H., Morgan-Lang, C., Hatzenpichler, R., Goudeau, D., & Malmstrom, R. (2022). Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biology 20 (1): e3001508. https://doi.org/10.1371/journal.pbio.3001508
7. Yu, H., Skennerton, C.T., Chadwick, G.L., Leu, A.O., Aoki, M., Tyson, G.W., and Orphan V.J. (2022) Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea. The ISME Journal 16, 168–177. https://doi.org/10.1038/s41396-021-01047-0 (Editors’ Choice)
8. Yu, H., Leadbetter, J.R. (2020) Bacterial chemolithoautotrophy via manganese oxidation. Nature 583, 453–458. https://doi.org/10.1038/s41586-020-2468-5 (Nature Cover)
9. Yu, H., Susanti, D., McGlynn, S.E., Skennerton, C.T., Chourey, K., Iyer, R., Scheller, S., Tavormina, P., Hettich, R.L., Mukhopadhyay, B., and Orphan, V.J. (2018) Comparative genomics and proteomic analysis of assimilatory sulfate reduction pathways in anaerobic methanotrophic archaea. Frontiers in Microbiology. 9. https://doi.org/10.3389/fmicb.2018.02917
10. Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E., and Orphan, V.J. (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351: 703–707. https://doi.org/10.1126/science.aad7154 (Science Perspective)
11. van Baren, M.J., Bachy, C., Reistetter, E.N., Purvine, S.O., Grimwood, J., Sudek, S., Yu, H., Poirier, C., Deerinck, T.J., Kuo, A., Grigoriev, I.V., Wong, C., Smith, R.D., Callister, S.J., Wei, C., Schmutz, J., and Worden, A.Z. (2016) Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genomics 17: 267. https://doi.org/10.1186/s12864-016-2585-6
12. Glass, J.B., Yu, H., Steele, J.A., Dawson, K.S., Sun, S., Chourey, K., Pan, C., Hettich, R.L., Orphan, V.J. (2014) Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments. Environmental Microbiology 6, 1592-1611. https://doi.org/10.1111/1462-2920.12314
13. Hartmann, M., Howes, C.G., VanInsberghe, D., Yu, H., Bachar, D., Christen, R., Nilsson, R.H., Hallam, S.J. and Mohn, W.W. (2012) Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. The ISME Journal 6, 2199–2218. https://doi.org/10.1038/ismej.2012.84
Patents
Scheller, S., Orphan, V. J. and Yu, H. (2017). Methane oxidation methods and compositions. United States Patent No. US20170107479A1.